7 research outputs found

    Deep Learning for Processing Electromyographic Signals: a Taxonomy-based Survey

    Get PDF
    Deep Learning (DL) has been recently employed to build smart systems that perform incredibly well in a wide range of tasks, such as image recognition, machine translation, and self-driving cars. In several fields the considerable improvement in the computing hardware and the increasing need for big data analytics has boosted DL work. In recent years physiological signal processing has strongly benefited from deep learning. In general, there is an exponential increase in the number of studies concerning the processing of electromyographic (EMG) signals using DL methods. This phenomenon is mostly explained by the current limitation of myoelectric controlled prostheses as well as the recent release of large EMG recording datasets, e.g. Ninapro. Such a growing trend has inspired us to seek and review recent papers focusing on processing EMG signals using DL methods. Referring to the Scopus database, a systematic literature search of papers published between January 2014 and March 2019 was carried out, and sixty-five papers were chosen for review after a full text analysis. The bibliometric research revealed that the reviewed papers can be grouped in four main categories according to the final application of the EMG signal analysis: Hand Gesture Classification, Speech and Emotion Classification, Sleep Stage Classification and Other Applications. The review process also confirmed the increasing trend in terms of published papers, the number of papers published in 2018 is indeed four times the amount of papers published the year before. As expected, most of the analyzed papers (≈60 %) concern the identification of hand gestures, thus supporting our hypothesis. Finally, it is worth reporting that the convolutional neural network (CNN) is the most used topology among the several involved DL architectures, in fact, the sixty percent approximately of the reviewed articles consider a CNN

    Artificial Neural Network Analysis and ERP in Intimate Partner Violence

    No full text
    The aim of this work is to analyze, through artificial neural network models, cortical pattern of women with Intimate Partner Violence (IPV) to investigate representative models of sensitization or habituation to the emotional stimulus in IPV. We investigate the ability of high emotional impact images, during a recognition task, analyzing the electroencephalogram data and event related potentials. Neural network analysis highlights an impairment in IPV group in cortical arousal, during the emotional recognition task. The alteration of this capacity has obvious repercussions on people’s lives, because it involves chronic difficulties in interpersonal relationships

    Evaluation of Vision-Based Hand Tool Tracking Methods for Quality Assessment and Training in Human-Centered Industry 4.0

    No full text
    Smart industrial workstations for the training and evaluation of workers are an innovative approach to face the problems of manufacturing quality assessment and fast training. However, such products do not implement algorithms that are able to accurately track the pose of a hand tool that might also be partially occluded by the operator’s hands. In the best case, the already proposed systems roughly track the position of the operator’s hand center assuming that a certain task has been performed if the hand center position is close enough to a specified area. The problem of the pose estimation of 3D objects, including the hand tool, is an open and debated problem. The methods that lead to high accuracies are time consuming and require a 3D model of the object to detect, which is why they cannot be adopted for a real-time training system. The rise in deep learning has stimulated the search for better-performing vision-based solutions. Nevertheless, the problem of hand tool pose estimation for assembly and training procedures appears to not have been extensively investigated. In this study, four different vision-based methods based, respectively, on ArUco markers, OpenPose, Azure Kinect Body Tracking and the YOLO network have been proposed in order to estimate the position of a specific point of interest of the tool that has to be tracked in real-time during an assembly or maintenance procedure. The proposed approaches have been tested on a real scenario with four users handling a power drill simulating three different conditions during an assembly procedure. The performance of the methods has been evaluated and compared with the HTC Vive tracking system as a benchmark. Then, the advantages and drawbacks in terms of the accuracy and invasiveness of the method have been discussed. The authors can state that OpenPose is the most robust proposal arising from the study. The authors will investigate the OpenPose performance in more depth in further studies. The framework appears to be very interesting regarding its integration into a smart workstation for quality assessment and training

    Face recognition, musical appraisal, and emotional crossmodal bias

    Get PDF
    Recent research on the crossmodal integration of visual and auditory perception suggests that evaluations of emotional information in one sensory modality may tend toward the emotional value generated in another sensory modality. This implies that the emotions elicited by musical stimuli can influence the perception of emotional stimuli presented in other sensory modalities, through a top-down process. The aim of this work was to investigate how crossmodal perceptual processing influences emotional face recognition and how potential modulation of this processing induced by music could be influenced by the subjectâ\u80\u99s musical competence. We investigated how emotional face recognition processing could be modulated by listening to music and how this modulation varies according to the subjective emotional salience of the music and the listenerâ\u80\u99s musical competence. The sample consisted of 24 participants: 12 professional musicians and 12 university students (non-musicians). Participants performed an emotional go/no-go task whilst listening to music by Albeniz, Chopin, or Mozart. The target stimuli were emotionally neutral facial expressions. We examined the N170 Event-Related Potential (ERP) and behavioral responses (i.e., motor reaction time to target recognition and musical emotional judgment). A linear mixed-effects model and a decision-tree learning technique were applied to N170 amplitudes and latencies. The main findings of the study were that musiciansâ\u80\u99 behavioral responses and N170 is more affected by the emotional value of music administered in the emotional go/no-go task and this bias is also apparent in responses to the non-target emotional face. This suggests that emotional information, coming from multiple sensory channels, activates a crossmodal integration process that depends upon the stimuli emotional salience and the listenerâ\u80\u99s appraisal

    A Deep Learning Instance Segmentation Approach for Global Glomerulosclerosis Assessment in Donor Kidney Biopsies

    No full text
    The histological assessment of glomeruli is fundamental for determining if a kidney is suitable for transplantation. The Karpinski score is essential to evaluate the need for a single or dual kidney transplant and includes the ratio between the number of sclerotic glomeruli and the overall number of glomeruli in a kidney section. The manual evaluation of kidney biopsies performed by pathologists is time-consuming and error-prone, so an automatic framework to delineate all the glomeruli present in a kidney section can be very useful. Our experiments have been conducted on a dataset provided by the Department of Emergency and Organ Transplantations (DETO) of Bari University Hospital. This dataset is composed of 26 kidney biopsies coming from 19 donors. The rise of Convolutional Neural Networks (CNNs) has led to a realm of methods which are widely applied in Medical Imaging. Deep learning techniques are also very promising for the segmentation of glomeruli, with a variety of existing approaches. Many methods only focus on semantic segmentation—which consists in segmentation of individual pixels—or ignore the problem of discriminating between non-sclerotic and sclerotic glomeruli, so these approaches are not optimal or inadequate for transplantation assessment. In this work, we employed an end-to-end fully automatic approach based on Mask R-CNN for instance segmentation and classification of glomeruli. We also compared the results obtained with a baseline based on Faster R-CNN, which only allows detection at bounding boxes level. With respect to the existing literature, we improved the Mask R-CNN approach in sliding window contexts, by employing a variant of the Non-Maximum Suppression (NMS) algorithm, which we called Non-Maximum-Area Suppression (NMAS). The obtained results are very promising, leading to improvements over existing literature. The baseline Faster R-CNN-based approach obtained an F-Measure of 0.904 and 0.667 for non-sclerotic and sclerotic glomeruli, respectively. The Mask R-CNN approach has a significant improvement over the baseline, obtaining an F-Measure of 0.925 and 0.777 for non-sclerotic and sclerotic glomeruli, respectively. The proposed method is very promising for the instance segmentation and classification of glomeruli, and allows to make a robust evaluation of global glomerulosclerosis. We also compared Karpinski score obtained with our algorithm to that obtained with pathologists’ annotations to show the soundness of the proposed workflow from a clinical point of view

    Smell and Meaning: An OERP Study

    No full text
    Abstract The purpose of this work is to investigate the olfactory response to a neuter and a smell stimulation through Olfactory Event Related Potentials (OERP). We arranged an experiment of olfactory stimulation by analyzing Event Related Potential during perception of 2 odor stimuli: pleasant (Rose, 2-phenyl ethanol C2H4O2) and neuter (Neuter, Vaseline Oil CH2). We recruited 15 adult safe non-smokers volunteers. In order to record OERP, we used VOS EEG, a new device dedicated to odorous stimulation in EEG. After the OERP task, the subject filled a visual analogic scale, regarding the administered smell, on three dimensions: pleasantness (P), arousing (A) and familiarity (F). We performed an artificial neural network analysis that highlighted three groups of significant features, one for each amplitude component. Three neural network classifiers were evaluated in terms of accuracy on both full and restricted datasets, showing the best performance with the latter. The improvement of the accuracy rate in all VAS classifications was: 13.93% (A), 64.81% (F), 9.8% (P) for P300 amplitude (Fz); 16.28% (A), 49.46% (F), 24% (P) for N400 amplitude (Cz, Fz, O2, P8); 110.42% (A), 21.19% (F), 24.1% (P) for N600 amplitude (Cz, Fz). Main results suggested that in smell presentation we can observe the involvement of slow Event-Related-Potentials, like N400 and N600, ERP involved in stimulus encoding

    A neural network for glomerulus classification based on histological images of kidney biopsy

    No full text
    Abstract Background Computer-aided diagnosis (CAD) systems based on medical images could support physicians in the decision-making process. During the last decades, researchers have proposed CAD systems in several medical domains achieving promising results. CAD systems play an important role in digital pathology supporting pathologists in analyzing biopsy slides by means of standardized and objective workflows. In the proposed work, we designed and tested a novel CAD system module based on image processing techniques and machine learning, whose objective was to classify the condition affecting renal corpuscles (glomeruli) between sclerotic and non-sclerotic. Such discrimination is useful for the biopsy slides evaluation performed by pathologists. Results We collected 26 digital slides taken from the kidneys of 19 donors with Periodic Acid-Schiff staining. Expert pathologists have conducted the slides preparation, digital acquisition and glomeruli annotations. Before setting the classifiers, we evaluated several feature extraction techniques from the annotated regions. Then, a feature reduction procedure followed by a shallow artificial neural network allowed discriminating between the glomeruli classes. We evaluated the workflow considering an independent dataset (i.e., processing images not used in the training procedure). Ten independent runs of the training algorithm, and evaluation, allowed achieving MCC and Accuracy of 0.95 (± 0.01) and 0.99 (standard deviation < 0.00), respectively. We also obtained good precision (0.9844 ± 0.0111) and recall (0.9310 ± 0.0153). Conclusions Results on the test set confirm that the proposed workflow is consistent and reliable for the investigated domain, and it can support the clinical practice of discriminating the two classes of glomeruli. Analyses on misclassifications show that the involved images are usually affected by staining artefacts or present partial sections due to slice preparation and staining processes. In clinical practice, however, pathologists discard images showing such artefacts
    corecore